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ON RECURSIVELY DEFINED GEOMETRICAL OBJECTS AND PATTERNS OF GROWTH

R+ G+ Schrandt and S. M. Ulam

ABSTRACT

Illustrations are given of computer-generated patterns exhibited by

figures "growing" according to certain recursive rules. Examples of grow-

ing patterns in two-and three-dimensionel space are given, Patterns are
discussed in an infinite strip of & given width where periodic growth is
observed. When modification of the rules of growth allows portions of the
pattern to die out, configurations split into separate connected pieces,
exhibiting the phenomens of both motion and some self-reproduction. A
simple conflict rule together with this modification allows e game of
survival between two systems growing in a finite portion of the plane.

The examples show both the complexity and richness of forms obtained from
starting with a simple geometrical element and the application of a simple

recursive rule,

In this report we discuss briefly some empiri-
cal results obtained by experiments on computing
machines. We continue the work described in e pa-
per "On Some Mathematical Problems Connected With
Patterns of erth."l

Rules of Growth.

Growth is in the plane subdivided into regular
squares. The starting configuration may be any
arbitrary set of (closed) squares. The growth pro-
ceeds by generations in discrete intervals of time.
Only the squares of the last generation are “alive"
and able to give rise to new squares. Given the
nth generation, we define the (m—l)th as follows:

A square of the next generation is formed if

a) 1t 1s contiguous to one and only one square

of the current generation, and

b) it touches no other previously occupied

square except if the squere should be its
"grandparent.” In addition:

c) of this set of prospective squares of the
(n-i-l)th generastion satisfying the previous
condition, we eliminate all squares that
would touch each other. However, squares
that have the same parent are allowed to
touch.

In three dimensions the growth rules are the
same. One merely replaces the squares by cubes and
observes all three provisions.

We show an example of such a pattern growing
on the infinite plane and then discuss patterns of
growth in an infinite strip of a given width where
a periodic growth is observed. We discuss, beyond
the work mentioned in Ref. 1, the behavior of fig-
ures growing according to our rules, with a new
proviso: every element of the figure vwhich is
older than a specified number of generations, say
two or three, "dles;" i.e., is erased., This makes
the figure move in the plene. We show some cases
of such motion, with occasional splitting of the



figures into separate connected pieces., In some
cases these figures are similar to the original
ones, thus exhibiting phenomena of both motion and
of self-reproduction. As another amusement we tried
on the computers the following game: starting,
still in the plane with two separate initial ele-
ments, we let each grow according to our rule (in-
cluding erasure or degth of the "o0ld" pieces), then
when the two patterns approach each other we still
apply the rule of a further growth of each figure
with the proviso that the would-be grown new pleces
are not put in if they should try to occupy the same
This gives rise to a game for survivel or a
"£ight" between two such systems-~-in some cases both
figures die out.

square.

Finally, we give an example of a simlilar proc-
ess of growth in three dimensional space (subdivided
into regular cubes) with our rules for recursive ad-
dition of new elements.

Two-Dimensional Patterns.

We present as examples of the planar type of
pettern Figs. la and 1b., Our start was a single
square, The patterns are plotted merely in one quad-
rant of the plane and show the result of 100 and 120
generations of growth, respectively. Fig. 1b shows
the pattern on & large square with 100 units on &
side; the portion of growth that extends beyond 100
units horizontally or vertically is not plotted,

The figures are symmetric about the diagonal of the
square, and the density of the occupied squares is
about O.4lt., There is no apperent periodicity in
portions of this pettern. As shown in Ref. 1, the
"stems" grow indefinitely on the sides of the quad-
rant, and the side branches split off from the stem.
It is not known vwhether some of these side branches
will grow to infinite length or whether they will
all in turn be choked off by other side branches
growing from the stem at later times,

In Fig. 2 we show a pattern grown from an ini-
tlal configuration consisting of three noncontiguous
sqQuares at the vertices of an approximately equilate
eral triangle., One will note that the patterns in
the subquadrants are identical to those of Figs. la
and 1lb. The borders or strips between the subquad-
rants are due to interference between patterns gen~

eragted by the individusl starting squares. One of

the strips reduces to a stem, since two of the
starting squares generate patterns symmetric with
respect to a 45° line through the center of the
triangle.

By restricting in edvance the growth of a pat-
tern to an infinite strip of finite width in the
plane, one observes a periodic growth. The proof
thaet in a finite strip the pattern must be periodic
ia essily obtained.
procedure one cbserves that the last generation is
confined to a part of the strip which extends
through its width and an equal distance in length
back of the most forward square. There is only a
finite number of possible patterns in such a square.

On inspection of our growth

Therefore, a configuration must repeat itself and
from then on the whole process starts again. Figure
3 shows different patterns generated in strips of
widths from 8 to 15 through 100 generations of
growth. In each case the start 18 a single square
in the upper left-hand corner of the strip. Table

1 gives the observed lengths of the periods for
strips of widths 1 to 17.
simple relation between the width of the strip and

the length of the period.

There seems to be no

Rules for Termination or '"Death" in the Pattern.

We have experimented with a rule for erasing;
i.e., elimination of a part of the pattern after it
is a fixed number of generations old. For this we
have adopted a simpler rule of growth of the pat-
tern by assuming only condition a). Each square
that is a certain fixed number k of generations old
Later
on, the pattern may grow back into these unoccupied
positions. We took for k either the values 1, 2,
or 3. For example, given a pattern, we grow the
squares of the (m~l)th generation from those of the
nth, and then erase those of the (n-1)*". Under
this rule the pattern will move and it may split up
into disconnected pleces, as shown in Fig. ha. It
turns out that certain perts of the pattern repli-
cate themselves in shape and these repeat as sub-
patterns, One such subpattern consists of a
straight strip of squares with two additional
squares on each end. We call this rather frequent
(See Fig. 4b.)

i8 erased or "dies" and becomes unoccupied.

replication subpattern a “dog bone."



Another construction concerns the behavior of
such patterns in s finite portion of the plane. We
have adopted a large square as the space for growth.
Its boundary acted as an sbsorber so that each
square which would possibly grow from a square on
the boundary was not considered. This was studied
under the simplified rule of growth mentioned above.
Starting with an initial configuration, say a single
small square, the pattern will grow and either even-
tually “die," or else will become periodic in time
and continue indefinitely.
tern eventually disappears or dies.

In most cases the pat-
This is be-
cause the death rule eliminates the old squares,
and the simple conflict rule together with the
boundary condition prevent any new squares from
forming. For these problems we kept only the cur-
rent generation, so k = 1. By this we mean that
given a configuration, we produce the next one and
then immediately erase the starting one.
run e number of cases on a computer to ascertain
either the period and its length, or the number of
generations before the pattern terminates. This we
have done in various sizes of the large square in
which the game takes place, A sampling was obtained
for sizea of the large squaere for 2x2 up to 8x8.

We have

As an example, consider the square of size 6x6.
There are, of course, 236 possible initial configu-
Out of these we have chosen 132 such con-
figurations at random, assuming thet each of the 36
squares has 1/2 chance of being occupied initially.
Each of these different starting configurations
Let s
be the number of states in each sequence and % the
length of a period. The values of s ranged from 11
to 109 with an averege of 33. The values of t were
1, 4, 6, 8, 12, and 2. Here t = 1 means the pat-
tern died out.
had t = 1.
t = 24. In enother experiment we tried 15 random
starting configurations chosen in an 8x8 large
square. The vaelues of & ranged from 49 to 397,
with t values of 1, 8, 12, and 16.
experiments had t = 1.

rations.

grew until it became periodic or died out.

In our sample, 87 of the 132 cases
The longest sequence hed 8 = 109, with

Ten of our 15

We can formulate condition a) of the rules of
growth in another way if we keep only one generation
before death. In this case the status of any square
in the (n+1)"® generation is determined only by the

state of its four neighboring squares in the nth
generation. Let us assign & 1 to an occupled square
and a O to an empty one, We use the two operators

(+) and (+), with the (+) modulo 2--that is, 1+1 = O.

It a‘n’bn’cn’dn are the four neighbors of a
square X and all four symbols have values 1 or O,
that is, they represent the states of the squares in
the nth generation, then the state of the square x
in the next generation is simply

X 1=% " an . (an+bn) +a b (cn+dn)
where the bars above the symbols represent the com-

plement (also modulo 2).

If the whole region in which the game is
played is bounded, say, again by a large square, Ve
will assume that the values on the boundary are al-
ways O. The state of the configuration at time
{n+1) is then obtainable by a fixed transformation
from the state at time (n).

One of the interesting properties to determine
is the existence of states which are self-replicating;
that is, they reproduce themselves immediately. These
are the fixed points of the transformation defined
It i8 easily verified that there are none
such (except those identically O, which means the
pattern died out) for squares of size 2x2 and 3X3.

above,

There exists just one such state for the ixh square.
This is given by

H e O
F O O K
b O O W
o+ M O

For the 5x5 square there are these two:

1 0 1 01 1101 1
1 0101 0O 0 0 O
0O 0 0 0 © and 11011
1 0 1 0 1 0O 0 0 0O
1 01 01 1101 1],

There are none of the 6x6 case. Here is an example
of one for the 17x17 case. Let A be the second of
the two 5x5 matrices. Let Nc and Nr be 5X1 and 1xS
matrices, respectively, with zero elements. Then

the matrix



A Nc A Nc A
N, 0 Nr 0 N,
A Nc A Nc A
Nr 0 N, 0 N.
A Nc A Nc A

is self-replicating.

Contests or Fights between Two Configurations.

We may start, on a large finite square, with
two different initial configurations each labeled,
say, by a different color, so as to distinguish one
get from the other. We let each grow according to
condition a) of the rules of growth, plus the death
rule. Now condition a) states that a square of the
next generation is not formed if it is contiguous
to two or more squares of the current generation.
Two such squares of the current generation may be
members of the same configuration or else one from
each of the two different configurations. So the
growth of these petterns is subject to restrictions
for elements of the new generation within themselves
separately, and when they are almost in contact, to
the two taken together., One or both of these sys-
tems may then go to zero or one may survive, for
some time or indefinitely.

Figures 5a, 5b, S5c, 54 illustrate one case of
such a fight between two starting patterns in e
23x23 square. They show the situation at genera-
tions 16, 25, 32, and 33, respectively. We kept
two generations before erasure for both patterns.
We assumed es initisl conditions for pattern A one
square in the extreme lower left-hand corner and for
pattern B one square placed one unit of distance off
from the upper right-hand corner. After 33 genera-
tions (Fig. 53) pattern B won, et which time the n'C
generation squares of pattern A were completely
erased. (The n-lth generation squares of A will
disappear the next generation.)

In another game we have started with two single
sqQuares in the same relative positions from the cor-
ners. For pattern A we kept one generation before
erasure, and for pattern B two generations. In this
case A won in 112 generations on the 23x23 board.
There is no figure for this contest.

Three-Dimensional Model.

We again used all three conditions of the rules
of growth in forming & three-dimensional pattern.
Figures 6a and 6b show two views of & model of such
a pettern. Two-dimensional plots of the pattern
were obtained from the computer after 30 genera-
tione of growth. The model was constructed from
these plots and then photographed. The starting
configuration was the single cube on the extreme
left of Fig. 6a. This model represents the part
grown in one octant of the space. In each octant
there is a further threefold symmetry elong the co-
ordinate axes, of which we took the part x> y,

X > z., There still remains a plane of symmetry at
14-50 to the x axis. The dark cubes represent the

301"h generation elements.

Our examples show both the complexity end the
richness of forms obtained from starting with e
simple geometrical element and the spplication of
a simple recursive rule. The amount of "informa-
tion" contained in these objects is therefore quite
small, despite their apparent complexity and unpre-
dictability.

If one wented to define a process of growth
which is continuous rather than by discrete steps,
the formulstion would have to involve functional
equations concerning partial derivatives.

It appears to us that a general study of the
geometry of objects defined by recursions and itera-
tive procedures deserves a general study--they pro-
duce a variety of sets different from those defined
by explicit algebraic or analytical expressions or
by the ususl differential equations.

ACKNOWLEDGMENTS

The three-dimensional model was constructed by
Barbara C. Powell and photographed by W. H. Regan.

REFERENCE

l. 8. Ulam in Proceedings of Symposia in Applied
Mathematics, Vol. XIV, American Mathematical
Society 1961’&, p. 215 to 224; see also Holladay,
Js Cey and Ulam, S., Notices of the American
Mathematical Soc. T (1960), p. 234; and Schrandt,
R. G., and Ulam, S., Notices of the American
Mathematical Society 7 (1960), 6h2.




TABLE 1

Width of strip Period of Pattern
1 1
2 2
3 3
b 5
5 5
6 8
7 13
8 13
9 13

10 26
11 13
12 91
13 13
1% 106
15 106
16 75

17 93



Fig. la.

Crowth from a single starting square atter 100 generations.




s

Fig. 1b.

Seme as Fig. la but after 120 generations.
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Fig. 2.

Growth from three noncontiguous starting squares.




Fig. 3. Patterns generated in an infinite strip of
widths 8 to 15, after 10O generations.,
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204

40
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Fig. La.

Crowth from a single starting square with death rule, keeping
two generations. The nth generation squares are cross hetched,

the (n-l)th are blank. The integers at the top are the number

of squares in the nth

and (n-l)th generation, and the genera-
tion number.
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two generations before erasure. There are 26 (n-l)th generation
squares of the lower pattern, and i nth generation squares. The

upper pattern has 32 (n-l)th generation squares, and 12 ot genera-
tion squeres.
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Fig. 5b.
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Fig. 5c. Same as Fig. S5a but after 32 generations.
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the extreme right.

ttern after 30 generations of growth

e

Model of three-dimensional
The starting configuration is the single cube on

ba.

Fig.
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Fig. 6b. Another view of the three-dimensional model showing the dark cubes
vhich are the elements of the 301-‘h generation.
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